Abstract

The theoretical and experimental analysis on the effects of extinction ratios of linear polarizer and analyzer in the measurement of birefringent retardance by a five-step phase-shifting method based on the plane polariscope is presented. Stokes vector and Mueller matrix are the tools used to perform this theoretical analysis. The theoretical analysis show that the coefficients of extinction ratios of linear polarizer and analyzer in plane polariscopic configuration can be eliminated by phase shifting and will not introduce errors with our proposed five-step method. A mica quarter waveplate with previously given phase retardation is tested and evaluated. The experimental comparison has been made between the calcite Glan-Thompson based system with extremely high extinction ratios and plastic Polaroid film based system with relatively lower extinction ratios. The experimental results show that there is no significant difference between the measured values from these two systems, which agrees well with the conclusion of theoretical analysis. Also, good experimental accuracy and repeatability are achieved as well by the proposed five-step phase-shifting method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call