Abstract

The effective measurement of plasma turbulence flow field is of great help for better understanding the turbulence in magnetically confined plasmas, and experimentally verifying the theoretically predicted phenomenon such as zonal flows. In this article, the dynamic programming based time-delay estimation technique is employed for the first time to estimate azimuthal velocity fluctuation of drift-wave turbulence in a linear magnetized plasma generated via a hot cathode plasma source. Analysis results clearly reproduce the zonal flow structure which is spontaneously generated by nonlinear energy transfer from the drift-wave turbulence. Moreover, via the comparison among the zonal flow (ZF) characteristics estimated respectively by the turbulent fluctuations of plasma located in different frequency regions, we further evaluate the dependences of accuracy and response for estimating ZF property using this newly developed time-delay estimation algorithm on the level of relative incoherent noise in the carrier waves. This work provides an example and reference value for deeper exploration on plasma turbulence and in particular the relevant flow field with the help of the dynamic programming based time-delay estimation technique.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.