Abstract

Fine hand movements require the synergistic contraction of intrinsic and extrinsic muscles to achieve them. In this paper, a Finite Element Digital Human Hand Model (FE-DHHM) containing solid tendons and ligaments and driven by the Muscle-Tendon Junction (MTJ) displacements of FDS, FDP and ED measured by ultrasound imaging was developed. The synergistic contraction of these muscles during the finger flexion movements was analyzed by simulating five sets of finger flexion movements. The results showed that the FDS and FDP contracted together to provide power during the flexion movements, while the ED acted as an antagonist. The peak stresses of the FDS, FDP and ED were all at the joints. In the flexion without resistance, the FDS provided the main driving force, and the FDS and FDP alternated in a "plateau" of muscle force. In the flexion with resistance, the muscle forces of FDS, FDP, and ED were all positively correlated with fingertip forces. The FDS still provided the main driving force, but the stress maxima occurred in the FDP at the DIP joint.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.