Abstract

We prepared a series of shape variants of a pre-tRNA and examined substrate shape recognition by bacterial RNase P ribozyme and holoenzyme. Cleavage site analysis revealed two new subsites for accepting the T-arm and the bottom half of pre-tRNA in the substrate-binding site of the enzyme. These two subsites take part in cleavage site selection of substrate by the enzyme: the cleavage site is not always selected according to the relative position of the 3'-CCA sequence of the substrate. Kinetic studies indicated that the substrate shape is recognized mainly in the transition state of the reaction, and neither the shape nor position of either the T-arm or the bottom half of the substrate affected the Michaelis complex formation. These results strongly suggest that the 5' and 3' termini of a substrate are trapped by the enzyme first, then the position and the shape of the T-arm and the bottom half are examined by the cognate subsites. From these facts, we propose a new substrate recognition model that can explain many experimental facts that have been seen as enigmatic.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call