Abstract

The application efficiency of the Dynamic Rotating Latent-Energy-Storage Envelope (DRLESE) system is highly contingent upon dynamic rotation timings. To gain the optimal rotation timings, six different timings were examined by employing the liquid fraction, thermal storage and release, surface temperature and heat flow. The numerical heat transfer method was employed and verified an experiment. Results indicated that the optimal initial rotation occurs in the forenoon, when the inner surface temperature aligns with the sol-air temperature. Subsequently, achieving optimal secondary rotation is possible in the afternoon when the sol-air temperature equals the liquid temperature of PCM (Phase Change Material). Under these optimized initial and secondary rotation timings, the significant enhancements in thermal performance of the DRLESE system were observed. By optimizing rotation timings, indoor effective heat release can reach up to 3182.9 kJ/Day with an effectiveness percentage exceeding 99.99%, and inner surface heat flow was increased by 5.86%–12.26%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call