Abstract
This paper illustrates the rectifier stress issue of the active clamped dual switch forward converters operating on discontinuous current mode (DCM), and analyzes the additional reverse voltage on the rectifier diode of active clamped dual switch forward converter at DCM operation, which does not appear in continuous current mode (CCM). The additional reverse voltage stress, plus its spikes, definitely causes many difficulties in designing high performance power supplies. In order to suppress this voltage spike to an acceptable level and improve the working conditions for the rectifier diode, this paper carefully explains and presents the working principles of active clamped dual switch forward converter in DCM operation, and theoretically analyzes the causes of the additional reverse voltage and its spikes. For conquering these difficulties, this paper also innovate active clamped snubber (ACS) cell to solve this issue. Furthermore, experiments on a 270W active clamped dual switch forward converter prototype were designed to validate the innovation. Finally, based on the similarities of the rectifier network in forward-topology based converters, this paper also extents the utility of this idea into even wider dc-dc converters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.