Abstract

Multi-frequency vortex-induced vibration of flexible riser in lineally sheared fluid fields with different shearing parameters is explored by using the numerical approach. By combining the finite element method with a hydrodynamic model, the approach can consider mode competition based on modal energy and can carry out nonlinearly simultaneously dynamic response in time domain. Our analysis shows that multi-frequency VIV may occur both in non-uniform and uniform fluid fields. And, the behaviors of multi-frequency VIV are different from single-frequency VIV. Because several modes are involved and compete with each other, and consequently the determination of modal excitation region become more complicated. As the towing speed (or the shearing parameter) increases in sheared flow, the average RMS displacement does not regularly rise (or drop), but slightly fluctuates owing to changes of the participating mode and its excitation region. On the other hand, the average RMS stress gradually rises owing to higher-order modes being included. Moreover, it is found that the dominant frequency distributing along structural span significantly changes with the towing speed, and the length of the first dominant frequency gets smaller due to larger shearing parameter along with more intense competition between the participating modes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.