Abstract
Nowadays, computer aided diagnosis (CAD) system become popular because it improves the interpretation of the medical images compared to the early diagnosis of the various diseases for the doctors and the medical expert specialists. Similarly, bone fracture is a common problem due to pressure, accident and osteoporosis. Moreover, bone is rigid portion and supports the whole body. Therefore, the bone fracture is taken account of the important problem in recent year. Bone fracture detection using computer vision is getting more and more important in CAD system because it can help to reduce workload of the doctor by screening out the easy case. In this paper, lower leg bone (Tibia) fracture types recognition is developed using various image processing techniques. The purpose of this work is to detect fracture or non-fracture and classify type of fracture of the lower leg bone (tibia) in x-ray image. The tibia bone fracture detection system is developed with three main steps. They are preprocessing, feature extraction and classification to classify types of fracture and locate fracture locations. In preprocessing, Unshrap Masking (USM), which is the sharpening technique, is applied to enhance the image and highlight the edges in the image. The sharpened image is then processed by Harris corner detection algorithm to extract corner feature points for feature extraction. And then, two classification approaches are chosen to detect fracture or non-fracture and classify fracture types. For fracture or not classification, simple Decision Tree (DT) is employed and K-Nearest Neighbour (KNN) is used for classifying fracture types. In this work, Normal, Transverse, Oblique and Comminute are defined as the four fracture types. Moreover, fracture locations are pointed out by the produced Harris corner points. Finally, the outputs of the system are evaluated by two performance assessment methods. The first one is performance evaluation for fracture or non-fracture (normal) conditions using four possible outcomes such as TP, TN, FP and FN. The second one is to analysis for accuracy of each fracture type within error conditions using the Kappa assessment method. The programming software used to implement the system is MATLAB with wide range of image processing tools environment. The system produces 82% accuracy for classification fracture types.
Highlights
Today, medical image processing is a field of science that is gaining wide acceptance in healthcare industry due to its technological advances and software breakthroughs
Automatic leg bone fracture recognition and localization algorithm is implemented based on the computer vision techniques to develop the automatic bone fracture diagnosis system in the computer aided diagnosis (CAD) system
Unsharp masking (USM) is useful for image enhancement and image sharpening of boundary condition in the images
Summary
Medical image processing is a field of science that is gaining wide acceptance in healthcare industry due to its technological advances and software breakthroughs. It plays a vital role in disease diagnosis and improved patient care and helps medical practitioners during decision making with regard to the type of treatment. Bone fracture detection and treatment, which affects many people of all ages, is growing important in modern society. Bone fracture can occur due to a simple accident or different types of diseases. Doctors and radiologists relay mainly on X-ray images to determine whether a fracture has occurred and the precise nature of the fracture. Computer vision system can help to screen X-ray images for suspicious cases and
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.