Abstract

The meniscus shell plays an important role in slab quality and process operation for continuously cast steel. One decisive reason is initial solidifying shell and growing dendrite under the mechanical stress caused by mold oscillation and liquid steel flow to generate disturbance of casting. The mechanical state of meniscus shell was analyzed using mathematical models in combination with thermo-physical properties and flow rate of steel to shed light on the formation of initial defects. The results show that the mold oscillation is a critical factor on the initial crack formation because the periodic stress makes the shell bending. The formed crack may also expand and propagate due to the following secondary cooling and straightening behavior. The primary dendrite has high possibility to be broken by fluid flow in the solidification front to lead to the non-uniform thickness of solidifying shell. The inter-dendrite bridging is also likely to be formed to produce other internal defects, such as air hole and solute enrichment in the residual molten steel located in the bridging area.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.