Abstract

The electronic structure and hence the valence charge distribution of germanium at 296 and 200 K has been elucidated from structure factors measured by X-ray diffraction experiment using maximum entropy method (MEM) and multipole model. The methods adopted here are used to extract the fine details of the charge density distribution in the valence region. The charge density evaluated using both the models along the bond path and at the mid bond positions are compared and found to confirm the covalent bond existing in the solid. Topology of the charge density in the crystal is analysed and the critical points determined reveal unique spatial arrangement of valence charge in the direction normal to the bonding direction. The Laplacian of the charge density is also analysed for the understanding of the spatial distribution and the partitioning of the valence charge. The local charge concentration and the mapping of the electron pairs of the Lewis and valence shell electron pair repulsion (VSEPR) models have been done using electron localization function (ELF) and localized orbital locator (LOL).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.