Abstract
Neural network method is an effective tool for approximating the unknown function in controller design for nonlinear systems. To guarantee the validity of the approximation, state variables in approximated unknown functions need to stay in a compact set. However, in most existing results, the existence of the compact set has not been correctly proven; therefore, the proof is not actually complete in these existing works. In this paper, we analyze the existence of compact sets for two typical nonlinear systems with novel neural network-based controllers and show the strict proof for the semi-global uniform ultimate boundedness of the closed-loop system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.