Abstract

Carrying capacity of the casing will reduce after the casing is worn, which seriously affects the subsequent well drilling, well completion, oil extraction and well repair. A lot of researches on calculation of casing wear collapse strength have been done, but few of them focus on collapsing failure mechanism, and influencing factors and law of collapse strength. So, significant difference between estimated value and actual value of collapse strength comes into being. By theoretical analysis, numerical simulation and actual test, the collapsing failure mechanism of casing wear as well as the influencing factors and laws of collapse strength are investigated, and the investigation results show that collapse of crescent casing wear belongs to “three hinged” instability. The severely-worn position on the casing is yielded into the plastic zone first then deformed greatly, which causes the plastic instability of the whole structure. The casing wear collapse strength presents changes of exponent, power function and linear trend with the residual casing wall thickness, wear radius and axial load, respectively. When the flexibility is less than 10°/30 m, the borehole bending has less impact on casing collapse strength. Thus, the computation model for the casing wear collapsing strength is established by introducing wear radius coefficient and casing equivalent yield strength, at the same time, the model is tested. The test results show that the relative error for the computation model is less than 5%. The research results provide a basis for design of the casing string strength and evaluation of down-hole safety.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.