Abstract

In order to investigate the crack propagation in quasi-brittle materials like rock, ceramic and concrete, Hillerborg and his co-researchers abstracted the fracture process zone in front of a stress free crack in terms of a “fictitious crack zone”. On the fictitious crack zone, cohesive stresses distribute following a given softening relationship of stress vs. crack opening. Based on the polynomial or power series expression of cohesive crack opening displacement, the relationship of the cohesive stress vs. the crack opening displacement is established using elastic theory and integral equation, and some unknown physics variables are obtained using variation approach. The calculation results gained in this paper are close to the experimentally test ones.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.