Abstract

The formulation of a new analysis on a zero measure Cantor set C(⊂I = [0,1]) is presented. A non-Archimedean absolute value is introduced in C exploiting the concept of relative infinitesimals and a scale invariant ultrametric valuation of the form log ε-1 (ε/x) for a given scale ε > 0 and infinitesimals 0 < x < ε, x ∈ I\C. Using this new absolute value, a valued (metric) measure is defined on C and is shown to be equal to the finite Hausdorff measure of the set, if it exists. The formulation of a scale invariant real analysis is also outlined, when the singleton {0} of the real line R is replaced by a zero measure Cantor set. The Cantor function is realized as a locally constant function in this setting. The ordinary derivative dx/dt in R is replaced by the scale invariant logarithmic derivative d log x/d log t on the set of valued infinitesimals. As a result, the ordinary real valued functions are expected to enjoy some novel asymptotic properties, which might have important applications in number theory and in other areas of mathematics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.