Abstract

Analysis of thermal transport in nanolubricants is an interesting and potential topic. Hence, the current research focuses on the study of ZnO-SAE50 by adding the major effects of variable thermal conductivity, combined convection, and thermal radiations. The physical set up is designed for 3D dimensional flow through a surface and then investigated the results via numerical scheme. From detailed analysis of the physical results, it is examined that ZnO concentration and suction effects cause reduction in the fluid movement while for stretching case these variations are quite rapid than shrinking case. Further, the combined convective effects greatly influenced the fluid motion over the surface. The velocity increases rapidly under increasing Grashof effects and maximum motion is observed for stretching case. The temperature of ZnO-SAE50 enhanced due to increasing thermal radiations and ZnO concentration. However, minimal changes are investigated under variable thermal conductivity number , shterching/shrinking and maximum drop in the temperature is examined due to stronger Grashof number effects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.