Abstract
Min and Agresti (2005) proposed random effect hurdle models for zero-inflated clustered count data with two-part random effects for a binary component and a truncated count component. In this paper, we propose new marginalized models for zero-inflated clustered count data using random effects. The marginalized models are similar to Dobbie and Welsh’s ( 2001) model in which generalized estimating equations were exploited to find estimates. However, our proposed models are based on a likelihood-based approach. A Quasi-Newton algorithm is developed for estimation. We use these methods to carefully analyze two real datasets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.