Abstract

This study characterizes the temporal and spatial expression during early Xenopus development of Xwnt-4, a member of the Wnt gene family. The Xwnt-4 protein contains all of the sequence motifs that are hallmarks of the Wnt gene family and is 84% identical to the mouse homolog, Wnt-4. The highest level of Xwnt-4 expression occurs during the early neurula stage of development although its expression persists throughout embryogenesis and can be found in the adult testis, brain and epithelium. Consistent with its localization to head and dorsal regions of microdissected embryos, the expression of Xwnt-4 is enhanced in anterodorsalized embryos resulting from treatment with LiCl, and the expression of Xwnt-4 is suppressed in UV-ventralized embryos that lack anterior neural tissue. These results suggested that expression of Xwnt-4 is dependent on the induction of neural tissue. This idea was tested using induction experiments with dorsal or ventral ectoderm from a stage 10 embryo, recombined with dorsal marginal zone mesoderm from the same embryo. Recombinant tissue and ectoderm alone were cultured until stage 14, when Xwnt-4 expression was assayed using Northern analysis. In the recombinant assay, Xwnt-4 expression does not occur in the uninduced ectoderm but is expressed in both the dorsal and ventral recombinants. Xwnt-4 expression in neural ectoderm was confirmed in isolated, induced neural ectoderm, dissected away from the dorsal mesoderm, in a stage 12.5 embryo. Whole-mount in situ hybridization confirmed the dissection studies and demonstrated that Xwnt-4 transcripts are expressed in the dorsal midline of the midbrain, hindbrain and the floor plate of the neural tube. Collectively, the data indicate that Xwnt-4 is a unique member of the Wnt family whose expression is dependent on neural induction. The specific pattern of expression following neural induction suggests that Xwnt-4 plays a role in the early patterning events responsible in the formation of the nervous system in Xenopus.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.