Abstract
Understanding work zone traffic behavior is important for the planning and operation of work zones. The objective of this paper is to develop a mathematical model of work zone traffic flow elements by analyzing the relationships between speed, flow, and density that can be used to estimate the capacity of work zones. Traffic flow data were collected from 22 work zone sites on South Carolina interstate highways. The scatter plots of the collected data demonstrate that the relationship between speed and density does not follow Greenshields’ linear model. A non-linear hyperbolic model was developed to describe the relationship between speed and density. Using this model the capacity of a work zone was estimated to be 1550 passenger cars per hour for 2-lane to 1-lane closures. Adjustments to this capacity value to consider other types of vehicle as well as the work zone intensity are provided. Highway agencies can use this estimated capacity along with anticipated traffic demand to schedule work zone operations to avoid long periods of over-saturation. The tapered approach to work zone lane closures used by South Carolina is similar to methods used in work zones throughout the world. The authors believe that the methodology described in this paper for modeling work zone traffic as well as estimating work zone capacity is transferable to other countries. The conversion of actual volumes to passenger car equivalents may have to be modified due to the significant differences in traffic makeup between the United States and other countries.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.