Abstract

Brain hemorrhage and strokes are serious medical conditions that can have devastating effects on a person's overall well-being and are influenced by several factors. We often encounter such scenarios specially in medical field where a single variable is associated with several other features. Visualizing such datasets with a higher number of features poses a challenge due to their complexity. Additionally, the presence of a strong correlation structure among the features makes it hard to determine the impactful variables with the usual statistical procedure. The present paper deals with analysing real life wide Modified Rankin Score dataset within a Bayesian framework using a logistic regression model by employing Markov chain Monte Carlo simulation. Latterly, multiple covariates in the model are subject to testing against zero in order to simplify the model by utilizing a model comparison tool based on Bayes Information Criterion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.