Abstract
Whole-body vibration exposure has been found to be detrimental to the health of humans owing to effects such as degraded comfort, disc degeneration, and lower back pain. The purpose of this study was to determine if selected seat cushions and back supports minimize the transmission of vibrations during manual wheelchair propulsion. Ten unimpaired participants traversed an activities of daily living course using four seat cushions and four back supports. Vibrations were measured using triaxial accelerometers. The time domain and frequency domain transmissibility was used to determine if differences exist among seat cushions and back supports. Differences were found among the four seat cushions and four back supports. Seat cushion and back support manufacturers should concentrate on single-event shocks and repeated shocks, as opposed to oscillatory motions and self-generated vibrations, because the vibrations generated by these events tend to reside in the range of frequencies most sensitive to humans. Vibrations in this range of frequencies have the greatest effect on the transmission of whole-body vibration during manual wheelchair propulsion. Differences among the seat cushions and back supports appear to be due to the seat cushion/back support design and postural support. From a clinical perspective, the time domain transmissibility best describes the transmission of whole-body vibration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.