Abstract
Based on the Discrete Element Method (DEM), an abrasive wear system composed of pangolin scale models and abrasive sand was established. The wear morphology of pangolin scale models under different velocities were simulated by PFC2D®. Their wear behaviors were discussed with regard to the contact bond fields, the contact force chains, the velocity fields and the displacement fields of the abrasive wear system. Moreover, the resistance of the pangolin scale models under different velocities were analyzed. In the DEM simulation, the fracture and debris locomotion on the scale model were observed at a meso-microscopic scale. The results show that the geometrical shape of the pangolin scale is helpful for decreasing the boundary stress, with the wear rate decreasing when the velocity is higher than 0.62 m·s−1. The wear rate is no more than 0.006 g/m under the abrasive sand, with a radius of 0.11–0.20 mm. The wear rates of the pangolin scale model agree with the experimental results, and the DEM provides a new way to study the abrasive wear behavior of this non-smooth biological surface.
Highlights
In o1.rIdnetrotdoupctrioovnide a basic theory for the research of a bionic wear-resistant surface and structure, it is importaInntortdoerintvoepsrtoigvaidtee athbeaswiceathreobreyhafovriothreorfesteyaprcichaol fbaiobloiogniiccawl weaer-arer-srisetsainsttasnurtfascuerfaancdes [1,2,3]
The abrasive wear behaviors of arranged pangolin scales subjected to abrasive sand were simulated under three different velocities
Based on the dynamic contact bond fields, the dynamic contact force fields, the dynamic velocity fields and the dynamic forces acting on the scales, the dynamic abrasive wear behaviors of the pangolin scale were analyzed
Summary
In o1.rIdnetrotdoupctrioovnide a basic theory for the research of a bionic wear-resistant surface and structure, it is importaInntortdoerintvoepsrtoigvaidtee athbeaswiceathreobreyhafovriothreorfesteyaprcichaol fbaiobloiogniiccawl weaer-arer-srisetsainsttasnurtfascuerfaancdes [1,2,3]. The Maslatryuacnturpea, nitgisoilminpo(Mrtaanntitsopinenvetastdigacatteyltah)eiws eaartybpehicaavliosrooifl taynpiimcalabl iwolohgicichalowfteeanr-rdeisgisstaannt dsulrofaccoems otes in sand an[d1–s3o].ilTthoe fMeeadlayoann ppraenyg.oPlinan(Mgoalniins hpeanstaadauctnyliaq)uies lya teyvpoiclavlesdoibl oadniymsaul rwfahciceh, wofhteinchdicgasnaenffid ciently resist thleocaobmroatseisoinn soafnadbarnadssivoiel tsoafneedd/soonilprdeuy.ePtaongitoslilnohnags apuenriioqudeloyfeevvoolvleudtiboond.yTsuhrefamce,owrphhicohlcoagny of the pangolineffsicuirefnatlcye irsescisotmthpeosaebdraosifoan soefriaebsroasfivaerrasanngde/dsosilcadluees [t4o,5i]t,s wlohnigchpaerrieodaboofutev3oclumtiolno.ngThaend 2 cm wide, asm scohmroplwhoonnlgoiganyndFofi2gthcumerepwa1ni.dgeo,lains surface is shown in composed Figure 1. Some important wear behaviors that occur at a meso-microscopic scale are difficult to analyze using laboratory experiments [6], such as the breakaway of partial structure and the desquInamgeantieornalo, fsoambreasimivepodretbanrits.wMeaeranbwehhaivlei,otrhsethtraatdoicticounraaltmaemtheosdo-omf incruomsceorpiciaclssciamleulaarteiodni,ffiscuuclht atos athnealFyizneitue sEinlegmlaenbtorMateotrhyodex(pFeErMim)e, nctasnn[6o]t, sauncahlyzaes the burneeavkeanweavyoolvfepmaerntitalofstsrutrcutcutruereanodr the dyesnqaumaimc aftriaocntuorfeabarnadsivberedaekbarwisa.yMaetanthwehimlee, stoh-esctraaledit[i7o]n. LeMcohraenogveesrd, uoeutro manicarloy-siinsjupryr,ofvraidcteusreas tahnedordeetbicraisl lboacsoismfootriotnh,earnedsefaurrctheorfrebvioenaliecdwtheaerwpeaarrtsb,eshoavaisortoofimthperboivoelotghiecawl weaerapr-errefsoisrtmanant cbeodoyf tsruardfaitcieosn.aMl opraerotsvearn, odurdaenvaelyospispparrotvsidweistha thiegohrewticeaalrbaresissisfotarnthcee,rewsheaicrhchiosfobfiognriecawt esairgnpiafritcsa,nscoeasfotor simavpinrogventehregwy,emarapneprofowrmeraanncde oimf tprarodvitiinognaml apcahrtisneanpdroddeuvcetlioopnpeafrfitcsiwenicthy.high wear resistance, which is of great significance for saving energy, manpower and improving machine production efficiency Inofthtehseimbuiloaltoiognic,awl ewoebasre-rrveesdistmanesto-bmoidcyrosscuorpfiaccescsa. leMcohraenogveesrd, uoeutro manicarloy-siinsjupryr,ofvraidcteusreas tahnedordeetbicraisl lboacsoismfootriotnh,earnedsefaurrctheorfrebvioenaliecdwtheaerwpeaarrtsb,eshoavaisortoofimthperboivoelotghiecawl weaerapr-errefsoisrtmanant cbeodoyf tsruardfaitcieosn.aMl opraerotsvearn, odurdaenvaelyospispparrotvsidweistha thiegohrewticeaalrbaresissisfotarnthcee,rewsheaicrhchiosfobfiognriecawt esairgnpiafritcsa,nscoeasfotor simavpinrogventehregwy,emarapneprofowrmeraanncde oimf tprarodvitiinognaml apcahrtisneanpdroddeuvcetlioopnpeafrfitcsiwenicthy.high wear resistance, which is of great significance for saving energy, manpower and improving machine production efficiency
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.