Abstract

In this paper, elastic wave scattering in hollow pipes with non-axisymmetric and inclined angle defects is studied using finite element (FE) simulations. A comb array transducer is employed in the FE code to excite the pipe in its first longitudinal mode using a 10-cycle sine modulated excitation signal at 120[Formula: see text]kHz central frequency. Defects with variations in geometrical shapes such as depths, axial and circumferential lengths, and inclined angles are investigated to provide detailed analysis of wave propagation patterns and mode conversions in a 12-in diameter pipe. The influence of each geometrical parameter and also possible newborn modes is studied both in time and wavenumber-frequency domain via circumferential order identification approach and dispersion curves. Results show that the depth of a non-axisymmetric circumferential defect has the minimum influence on the propagating mode while crack’s width can influence the measured longitudinal mode in a sinusoidal pattern which is a function of excitation signal’s wavelength. Further, the propagating mode can exhibit higher contribution of either axisymmetric or non-axisymmetric modes based on the reflection patterns, depending on its angle and axial length.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call