Abstract

Wave propagation characteristics of a thin composite cylinder stiffened by periodically spaced ring frames and axial stringers are investigated by an analytical method using periodic structure theory. It is used for calculating propagation constants in axial and circumferential directions of the cylindrical shell subject to a given circumferential mode or axial half-wave number. The propagation constants corresponding to several different circumferential modes and/or half-wave numbers are combined to determine the vibrational energy ratios between adjacent basic structural elements of the two-dimensional periodic structure. Vibration analyses to validate the theoretical development have been carried out on sufficiently detailed finite element model of the same dimension and configuration as the stiffened cylinder and very good agreement is obtained between the analytical and the dense finite element results. The effects of shell material properties and the length of each periodic element on the wave propagation characteristics are also examined based on the current analytical approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.