Abstract
Water quality prediction is essential for effective water resource management and pollution prevention. In China, research on predictive analytics for various water bodies has not kept pace with environmental needs. This study addresses this gap by conducting a comprehensive analysis and modeling of water quality monitoring data from multiple distributed water bodies specifically within the Yangtze River Delta. Using a novel approach, this paper introduces a distributed water quality prediction system enhanced by a CNN-LSTM joint model. This model synergistically combines convolutional neural networks (CNN) and long short-term memory (LSTM) networks to robustly extract and utilize spatiotemporal data, thereby significantly improving the accuracy of predicting dynamic water quality trends. Notably, the excellent predictive performance of the joint model enables its prediction results to achieve RMSE and MAPE as low as 1.08% and 6.8%, respectively. Empirical results from this study highlight the system’s superior predictive performance. Based on these findings, this paper offers targeted recommendations for water quality monitoring, treatment, and management strategies tailored to the specific needs of the Yangtze River Delta. These contributions are poised to aid policymakers and environmental managers in making more informed decisions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.