Abstract

AbstractA multiple scales asymptotic analysis is developed to describe the attenuation of a water hammer pressure wave initiated by a time-varying valve closure. The analytical results expose a simple rule-of-thumb relationship between water hammer pressure wave attenuation and the periodic average of the absolute flow velocity that is predicted by a quasi-steady friction model. The effect of flow reversals on the pressure wave attenuation is examined through comparison with a similar method applied to the water hammer generated during flow establishment, wherein flow reversals do not occur and there is a nonzero net flow. Although the analytical description is based on the assumption that the water hammer is generated by a sudden valve closure, its practical usefulness is extended by using the numerical solution as a guide to demonstrate its validity for a range of valve closure durations. A qualitative upper limit on closure times to which the analytic results may be applied is also found. All results a...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.