Abstract

AbstractA multiple scales asymptotic analysis is developed to describe the attenuation of a water hammer pressure wave initiated by a time-varying valve closure. The analytical results expose a simple rule-of-thumb relationship between water hammer pressure wave attenuation and the periodic average of the absolute flow velocity that is predicted by a quasi-steady friction model. The effect of flow reversals on the pressure wave attenuation is examined through comparison with a similar method applied to the water hammer generated during flow establishment, wherein flow reversals do not occur and there is a nonzero net flow. Although the analytical description is based on the assumption that the water hammer is generated by a sudden valve closure, its practical usefulness is extended by using the numerical solution as a guide to demonstrate its validity for a range of valve closure durations. A qualitative upper limit on closure times to which the analytic results may be applied is also found. All results a...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.