Abstract

A conventional push-rod dilatometer is modified in order to accurately correlate the measured density to the predicted sample temperature of alloys in the phase-change regime. This new configuration makes use of a standard furnace assembly; however, the specimen is now symmetrically encased in a well-instrumented, graphite cylindrical shell. The combination of system geometry and high-conductivity sample holder material promotes the development of a simplified heat transfer model. The solution of this model properly correlates the measured density to that of the actual sample temperature based on using remote, sample-holder temperature measurements. Preliminary results using aluminum A356 provide insight into the proposed configuration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call