Abstract

AbstractIn the present study, an attempt is made to explore the flow visualization techniques inside the bottom heated lid–driven square cavity. The governing equations along with boundary conditions are solved numerically. The convection differencing schemes namely, upwind difference, quadratic upstream interpolation for convective kinetics, Superbee, and self‐filtered central differencing schemes are discussed and are used to simulate the flow using message passing interface (MPI) code. An attempt has been made to analyze the flow behavior inside the cavity using streamlines, isotherms energy streamlines, and field synergy by varying the Reynolds number (Re) and Richardson number (Ri). The simulated results (100≤ Re ≤ 1000 and 0.001≤ Ri ≤ 10) are validated with previous results in literature. It is observed that the computational cost for all the differencing schemes gets reduced tremendously when the MPI code is implemented. Flow becomes quasi‐two‐dimensional for Ri < 1. Overall, Nusselt number increases mildly with cavity inclination for the forced convection–dominated case (Ri = 0.1) while it increases much more rapidly with inclination for natural convection–dominated case (Ri = 10).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.