Abstract

Micro-rockets for propulsion of small spacecrafts exhibit significant differences with regard to their macroscale counterparts, mainly caused by the role of the viscous dissipation and heat transfer processes in the micron-sized scale. The goal of this work is to simulate the transient operation of a micro-rocket to investigate the effects of viscous heating on the flow and performance for four configurations of the expanding gas and wafer material. The modelling follows a multiphysics approach that solves the fluid and solid regions fully coupled. A continuum-based description that incorporates the effects of gas rarefaction through the micro-nozzle, viscous dissipation and heat transfer at the solid-gas interface is presented. Non-equilibrium is addressed with the implementation of a 2nd-order slip-model for the velocity and temperature at the walls. The results stress that solid-fluid coupling exerts a strong influence on the flowfield and performance as well as the effect of the wafer during the first instants of the transient in micro-rockets made of low and high thermal conductivity materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.