Abstract

Escherichia coli O145 serogroup is one of the big six non-O157 Shiga toxin producing E. coli (STEC) that causes foodborne illnesses in the United States and other countries. Cattle are a major reservoir of STEC, which harbor them in their hindgut and shed in the feces. Cattle feces is the main source of hide and subsequent carcass contaminations during harvest leading to foodborne illnesses in humans. The objective of our study was to determine the virulence potential of STEC O145 strains isolated from cattle feces and hide samples. A total of 71 STEC O145 strains isolated from cattle feces (n = 16), hide (n = 53), and human clinical samples (n = 2) were used in the study. The strains were subjected to whole genome sequencing using Illumina MiSeq platform. The average draft genome size of the fecal, hide, and human clinical strains were 5.41, 5.28, and 5.29 Mb, respectively. The average number of genes associated with mobile genetic elements was 260, 238, and 259, in cattle fecal, hide, and human clinical strains, respectively. All strains belonged to O145:H28 serotype and carried eae subtype γ. Shiga toxin 1a was the most common Shiga toxin gene subtype among the strains, followed by stx2a and stx2c. The strains also carried genes encoding type III secretory system proteins, nle, and plasmid-encoded virulence genes. Phylogenetic analysis revealed clustering of cattle fecal strains separately from hide strains, and the human clinical strains were more closely related to the hide strains. All the strains belonged to sequence type (ST)-32. The virulence gene profile of STEC O145 strains isolated from cattle sources was similar to that of human clinical strains and were phylogenetically closely related to human clinical strains. The genetic analysis suggests the potential of cattle STEC O145 strains to cause human illnesses. Inclusion of more strains from cattle and their environment in the analysis will help in further elucidation of the genetic diversity and virulence potential of cattle O145 strains.

Highlights

  • In recent years, there is an increased incidence of non-O157 Shiga toxin producing E. coli (STEC)-associated human illnesses

  • Based on the RAST subsystem annotation, the average draft genome size of STEC O145 strains isolated from cattle feces and hide were 5.41 (5.25–5.63) Mb and 5.28 (5.21–5.46) Mb, respectively

  • The average number of genes associated with mobile genetic elements was significantly higher (P < 0.01) in strains isolated from cattle feces [260 (224–291)] compared to hide strains [238 (203–268)]

Read more

Summary

Introduction

There is an increased incidence of non-O157 STEC-associated human illnesses. Six STEC serogroups, O26, O45, O103, O111, O121, and O145, are responsible for more than 70% of non-O157 STEC-associated human illnesses in the United States [1, 2]. In the US, two cases of E. coli O145 associated infection were reported in a day care in Minnesota in 1999 [7]. The serogroup was responsible for a waterborne human illness in Oregon in 2005 [8], and in 2010, a multistate outbreak associated with the consumption of romaine lettuce, leading to 45% hospitalization, with 10% of the patients developing hemolytic uremic syndrome [9]

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.