Abstract

The intense vibration of a roadheader rotary table damages the cutting system of the roadheader and reduces the efficiency. This paper analyzes the vibration of a rotary table by combining the finite element model with tested data from an underground coalmine. First, the force of the rotary table during the cutting procedure was analyzed, and the finite element model was built using Pro/E and ADAMS. The tested data were then imported into the model after selection, procession, and combination were conducted. Next, the six lowest‐order parameters of the rotary table were calculated. A vibration analysis of the rotary table under certain working conditions was conducted, and the results were compared with those from a modal experiment using a single‐point excitation method. According to the comparison between the simulation result and experiments, it is clear that this method is both reasonable and feasible. And it could supplement the theoretical foundation of the analysis of other roadheader components, providing reference for the improvement of the structure and dynamic properties of a roadheader. In addition, other vibration components of a roadheader such as the cutting head and the cutting arm could also be analyzed through the proposed method, with very reliable precision.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.