Abstract

We propose a semi-analytical approach to predict the natural flexural vibration frequencies of the material overlying a near-surface delamination defect in a solid. The formulation accommodates arbitrary length to depth ratio of the defect and higher-order modes of vibration. The material above the defect is modeled as a semi-clamped rectangular plate, where the dynamic edge effect factors, as deduced by Bolotin's asymptotic method, are estimated. The formulation results are evaluated through comparison to 3-D finite element (FE) simulation and experimental results obtained from impact resonance tests on concrete samples with controlled delamination defects. Good agreement with both experimental and 3-D FE results confirms the accuracy of the formulation in all cases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call