Abstract

The wave method of Kelley and Rubinow [Ann. Physics, 9 (1960), p. 24–75] is extended to the biharmonic eigenvalue problem with rectangular or circular geometry and clamped boundary conditions. First, it is noted from the clues of computer graphics that mode shapes of a clamped circular plate and those of a circular membrane look very similar to each other. This suggests that plate and membrane should have very similar vibration behavior and leads to the assumption that the covering space of a rectangular plate is still a torus By adding several waves on the boundary, approximate eigenfrequency equations are derived. Their solutions are shown to agree remarkably with numerical solutions obtained by the Legendre-tau spectral method here and by the finite-element method elsewhere at all frequency ranges. The same idea is also applied to the circular plate and yields excellent agreement between the exact values of eigenfrequencies and the asymptotic solutions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.