Abstract

A roof is a part of a building which provides us protection from animals, weather, notably rain or snow and admits light if a skylight is present. The different types of roofs are gable roof, hip roof, sawtooth roof, etc., and the materials used in the roofs include grass, ceramics, Teflon, etc. Opening is the intentional introduction of ambient air into a space, and it is mainly used to control indoor air quality by diluting and displacing indoor pollutants; it can also be used for purposes of thermal comfort or dehumidification. Modern trends of roofs are now available with different modern and cheap materials with openings. This paper discusses the numerical and physical models developed for the design of different asymmetric membrane roofs and thus comparing the results of the models with those of the various models and their analysis. Generally, the shapes considered are conoid shape, saddle shape, and elliptical dome shape with one or more openings. The materials adopted for asymmetric membrane roofs are modern textile material, i.e., polytetrafluoroethylene, synthetic rubber, i.e., ethylene–propylene–diene–terpolymer and polyvinyl chloride (PVC). This initially outlines procedures for stress analysis, wind pressure analysis, and seismic analysis. Finally, construction of the actual membrane is described, and comparison is made. Determination of the mechanical properties of the fabrics used to construct the asymmetric membrane roofs which are also briefly discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.