Abstract

Rainfall is a key component of the hydrological cycle, and its spatiotemporal variability is essential from the both scientific and practical perspectives. This study is focused on analysis of temporal variability and trends in historical rainfall records for stations in the Geba River basin. The Geba catchment is surrounded by the Danakil basin in the east, by the Tekeze River basin in the south, and the Werie River basin in the west which is located in the northern Ethiopia regional state of Tigray between 38° 38′ E and 39° 48′ E and 13° 18′ N and 14° 15′ N. The climate over the basin is semi-arid and has large elevation differences varying from 926 to 3301 m above mean sea level. Daily rainfall data of 43 years measured at seven stations in the basin for the period of 1971 to 2013 for annual and seasonal rainfall trends have been processed and used for the analysis. The non-parametric Mann–Kendall test and the Sen’s slope estimator have been used to identify the existence of trends and slope magnitude in rainfall. Results revealed that although there was a mix of positive and negative trends, they were no statistically significant except at one station which showed an increasing trend in annual rainfall. Considering rainfall in different seasons, an increase in rainfall was observed in two stations in the wet season which, however, was not statistically significant. For the remaining stations, a weak decline in wet season rainfall (not statistically significant at 95 % confidence level) for four stations and absence of trend for one station were noticed. Furthermore, no statistically significant trend (positive or negative) was evident for the dry season rainfall. Results of this study may prove useful in the preparation of climate change mitigation and adaptation strategies in rainfed agricultural and water supply systems in the region.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.