Abstract
Accidental release of Hydrogen Fluoride (HF) can result in initially dense, highly reactive and corrosive gas clouds. These clouds will typically contain a mixture of gases, aerosols and droplets which can be transported significant distances before lower hazard levels of HF concentration are reached. Previous related field and laboratory experiments have been analyzed to estimate the effectiveness of barrier devices. The experiments were examined to determine their relevance to Hydrogen Fluoride spill scenarios. Wind tunnel and field data were compared where possible to validate the laboratory experiments. Barrier influence on peak concentrations, cloud arrival time, peak concentration arrival time, and cloud departure time were determined. These data were used to develop entrainment models to incorporate into integral and depth averaged numerical models. The models were then run to examine barrier performance for a typical Hydrogen Fluoride spill for a wide range of vapor barrier heights, spill sizes, meteorological conditions and release configurations. Finally the results of the data analysis and numerical sensitivity study were interpreted and expressed in a form useful to evaluate the efficiency of vapor barrier mitigation devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Wind Engineering & Industrial Aerodynamics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.