Abstract

AbstractRecharge from surface to groundwater is an important component of the hydrological cycle, yet its rate is difficult to quantify. Percolation through two‐dimensional circular inhomogeneities in the vadose zone is studied where one soil type is embedded within a uniform background, and nonlinear interface conditions in the quasilinear formulation are solved using Newton's method with the Analytic Element Method. This numerical laboratory identifies detectable variations in pathline and pressure head distributions that manifest due to a shift in recharge rate through in a heterogeneous media. Pathlines either diverge about or converge through coarser and finer grained materials with inverse patterns forming across lower and upper elevations; however, pathline geometry is not significantly altered by recharge. Analysis of pressure head in lower regions near groundwater identifies a new phenomenon: its distribution is not significantly impacted by an inhomogeneity soil type, nor by its placement nor by recharge rate. Another revelation is that pressure head for coarser grained inhomogeneities in upper regions is completely controlled by geometry and conductivity contrasts; a shift in recharge generates a difference that becomes an additive constant with the same value throughout this region. In contrast, shifts in recharge for finer grained inhomogeneities reveal patterns with abrupt variations across their interfaces. Consequently, measurements aimed at detecting shifts in recharge in a heterogeneous vadose zone by deciphering the corresponding patterns of change in pressure head should focus on finer grained inclusions well above a groundwater table.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.