Abstract
The identification of a mental disorder at its early stages is a challenging task because it requires clinical interventions that may not be feasible in many cases. Social media such as online communities and blog posts have shown some promising features to help detect and characterise mental disorder at an early stage. In this work, we make use of user-generated content to identify depression and further characterise its degree of severity. We used the user-generated post contents and its associated mood tag to understand and differentiate the linguistic style and sentiments of the user content. We applied machine learning and statistical analysis methods to discriminate the depressive posts and communities from non-depressive ones. The depression degree of a depressed post is identified using variations of valence values based on the mood tag. The proposed methodology achieved 90%, 95% and 92% accuracy for the classification of depressive posts, depressive communities and depression degree, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.