Abstract

The efficiency of upconversion fluorescence for Er3+ and Yb3+ codoped into NaYF4 powder crystals is investigated. The dependence of Er3+ green (540 nm) and red (660 nm) upconversion fluorescence intensities on laser excitation intensity and the ratio of the green and red fluorescence intensities respectively under 355‐nm and 936‐nm excitations have been measured and analyzed in terms of radiative and nonradiative relaxation mechanisms. It is shown that the intensity of both the green and red upconversion fluorescence bands is affected at high pumping intensities by a low‐lying state acting as a bottleneck, with the red fluorescence less affected than the green. In addition to two‐photon, two‐step excitation and energy transfer processes, nonlinear optical coupling mechanisms of avalanche processes appear responsible for reducing the bottleneck saturation of the red upconversion fluorescence.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call