Abstract

A finite difference scheme with a shock-fitting algorithm has been used to investigate unsteady inviscid now with a shock in an inlet diffuser. The flowfield consists of three different regions: the supersonic and the subsonic regions, and a region containing both air and liquid fuel droplets, separated by a normal shock wave and a fuel injection system. The analysis is based on a two-phase, quasi-one-dimensional model. The response of a shock wave to various disturbances has been studied, including large-amplitude periodic oscillations and pulse perturbations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.