Abstract

Three-dimensional, unsteady Reynolds-averaged Navier-Stokes equations are solved by the CFD code CFX-10 in a radial diffuser pump. The turbulence is simulated by the k- ɛ based shear stress transport turbulence model. To validate the CFD results, two-dimensional Laser Doppler Velocimetry (LDV) measurements have also been conducted. Both the phase-averaged velocity field and the turbulence field have been analyzed in detail. A comparison of the phase averaged velocity fields at the radial gap for both methods shows a very good agreement for the global periodic flow field. The analysis shows that a jet-wake structure is observed near the impeller outlet, and the diffuser flow strongly depends on the relative impeller positions which provide different inflow conditions for the downstream diffuser. The effects from the impeller rotation to the diffuser flow become very small at the diffuser outlet.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.