Abstract

Reduced repolarization reserve and increased transmural dispersion of repolarization (TDR) are known risk factors for Torsade de Pointes development, but less is known about the role of apex-to-base (apicobasal) repolarization in arrhythmogenesis. Three needles were inserted in rabbit left ventricle to record unipolar electrograms from endocardium to epicardium and base to apex. Total repolarization interval (TRI) and peak-to-end repolarization interval (Tp) were assessed after quinidine (n=6) and D,L-sotalol (n=6) perfusion in combination with the IKs inhibitor chromanol 293B. About 30µM D,L-sotalol increased TRI and Tp more at the base (TRI +40±4%; Tp +89±11%) relative to the apex (TRI +28±3%, Tp +30±8%). Similar results were obtained with quinidine: TRI and Tp increased more at the base compared to the apex. No significant differences were recorded from the endocardium to the epicardium. Our results show that combined IKr+IKs block prolonged TRI and Tp significantly more at the ventricular base than at the apex, in the absence of transmural dispersion of refractoriness. Regional changes in TRI and Tp indicate the contribution of apicobasal dispersion to arrhythmogenicity compared to TDR in a rabbit heart model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.