Abstract

Synthetic aperture interferometric radiometry (SAIR) has provided an effective approach for achieving high spatial resolution in remote sensing at microwave frequencies. The radiometric sensitivity of a synthetic aperture interferometric radiometer is determined by the uncertainty in visibility samples. Generally, visibility samples can be calculated by utilizing either nominal or redundant correlation methods, such as in microwave imaging radiometry with aperture synthesis. In this paper, we use the average of results from both methods, which results in a 1.5 dB improvement in the signal-to-noise ratio (SNR) of visibility samples by assuming double side band (DSB) inphase/quadrature (I/Q) demodulation. Moreover, the requirement for the baseband signals to have a high sampling rate for optimum visibility sample uncertainty can be greatly relaxed, regardless of the type of demodulation. The receiver complexity, volume, and power consumption will be also much lower, which is critical for airborne and space-borne SAIR applications. The mathematical derivation is presented in detail followed by verifications with several experiment results based on the SAIR prototype instrument.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call