Abstract

Noninvasive characterization of cortical long bones using axial transmission ultrasound is a promising diagnostic technology for osteoporotic cortical thinning assessment. However, the soft tissue-bone coupling effect remains to be a challenge and an ambiguity especially in vivo. The influence of the overlying soft tissue layer with a varying thickness on the propagation of ultrasonic guided waves in cortical bone is studied experimentally and theoretically in this article. The wave propagation is characterized based on waveform comparison, spectral density and decomposition, dispersion energy imaging, and particle displacement analysis. Good agreement between experimental observations with theoretical predictions by semi-analytical finite element simulations is observed. The sensitivity of propagation characteristics in response to the coupled tissue thickness is elucidated. As the thickness of the loading soft tissue grows, the guided wave signals exhibit greater attenuated amplitude and delayed arrival time; more complex dispersive wave patterns emerge; and the modal number and density increase. The research findings advance the fundamental comprehension of ultrasonic-guided-wave excitation and interaction in long bones and facilitate further technical development and clinical utility of quantitative guided-wave ultrasonography in routine healthcare services as a nondestructive imaging modality for cortical bone examination.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call