Abstract

Jammers emit strong intentional jamming signals aiming to limit or block legitimate communications. The distribution of jammers, whether in non-clustered or clustered form, significantly influences the performance of vehicle-to-everything (V2X) networks. In addition, the fluctuations in the three-dimensional (3D) antenna beam width of unmanned aerial vehicles (UAVs) can exert a substantial impact on the network’s overall performance. This paper introduces a model for UAV-V2X (U-V2X) communications in mm-Wave bands, considering non-clustered and clustered jammers, as well as the varying 3D antenna beam width. The roads are modeled using a Poisson line process, vehicular nodes (VNs) are modeled using a 1D Poisson point process (PPP), and UAVs are modeled using a 3D PPP. The jammers are distributed in two ways: non-clustered and clustered distributions. Moreover, the fluctuations in the 3D antenna beam width follow a normal distribution. To this end, a typical node’s performance in U-V2X communications is evaluated for various network configurations, including the number of UAVs, VNs, roads, jammers, and jammer’s transmission power. The analytical expressions for the outage probability (OP) of VN to VN connection (i.e., V2V), VN to UAV connection (i.e., V2U2V), and an overall connection (i.e., U-V2X), under non-clustered and clustered jamming, along with the fluctuating antenna beam width, are derived. The results revealed that the performance of the U-V2X communications utilizing mm-Waves is significantly degraded with the non-clustered jamming in comparison with the clustered jamming. The fluctuations in the 3D beam width of the UAV antennas further compromise the network’s performance. Thus, accurate modeling of these fluctuations is crucial, particularly in the presence of non-clustered jammers. Furthermore, the system designers should focus on implementing additional anti-jamming countermeasures specifically targeting non-clustered jammers in U-V2X communications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call