Abstract
In this paper we propose and analyze a class of finite volume element method for solving a second order elliptic boundary value problem whose solution is defined in more than one length scales. The method has the ability to incorporate the small scale behaviors of the solution on the large scale one. This is achieved through the construction of the basis functions on each element that satisfy the homogeneous elliptic differential equation. Furthermore, the method enjoys numerical conservation feature which is highly desirable in many applications. Existing analyses on its finite element counterpart reveal that there exists a resonance error between the mesh size and the small length scale. This result motivates an oversampling technique to overcome this drawback. We develop an analysis of the proposed method under the assumption that the coefficients are of two scales and periodic in the small scale. The theoretical results are confirmed experimentally by several convergence tests. Moreover, we present an application of the method to flows in porous media.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.