Abstract
A structured kinetic model has been employed to analyze the performance of a two-stage continuous fermentation of a recombinant Escherichia coli. Separating the cell growth phase from the gene expression phase in two fermentors minimizes the growth rate difference between the recombinant cells and the plasmid-free cells in the first fermentor, thereby increasing the plasmid stability. The plasmid-harboring cells from the first fermentor are continuously fed into the second fermentor, in which the foreign protein synthesis is turned on by the addition of the inducer. Consequently, the recombinant cells experience an immediate reduction in growth rates as soon as they enter the second stage and then recover to synthesize the foreign protein. To analyze the fermentation performance contributed by these cells with different intracellular foreign protein levels and growth rates, a novel method for determining the residence time distribution of the growing cells in the second stage has been formulated. Combined with this method, the structured kinetic model for recombinant bacterial cells is used to predict the plasmid stability and foreign productivity at various operation conditions, such as induction strength and dilution rates. This model can provide us with thorough understanding of the characteristics of the two-stage fermentations, and is useful for the development of large scale continuous cultures of recombinant bacteria.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.