Abstract

In this paper, we present two parallel queues with jockeying and restricted capacities. Each exponential server has its own queue, and jockeying among the queues is permitted. The capacity of each queue is restricted to L including the one being served. Customers arrive according to a Poisson process and on arrival; they join the shortest feasible queue. Moreover, if one queue is empty and in the other queue, more than one customer is waiting, then the customer who has to receive after the customer being served in that queue is transferred to the empty queue. This will prevent one server from being idle while the customers are waiting in the other queue. Using the matrix-analytical technique, we derive formulas in matrix form for the steady-state probabilities and formulas for other performance measures. Finally, we compare our new model with some of Markovian queueing systems such as Conolly’s model [B.W. Conolly, The autostrada queueing problems, J. Appl. Prob. 21 (1984) 394–403], M / M / 2 queue and two of independent M / M / 1 queues for the steady state solution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.