Abstract

AbstractAnalysis of porous fins for their higher heat transfer in comparison with solid fins with identical volumes has attracted significant attention. In this paper, a two‐dimensional thermal analysis of a porous fin having variable thermal conductivity coefficient is performed using finite difference method. Heat transfer through porous media is simulated using passage velocity from Darcy's model. The thermal conductivity of the solid phase is considered as a linear function of temperature. It is found that the temperature profile of the fin is completely two‐dimensional even for high Rayleigh and Darcy numbers (Ra = 103∼104, Da = 0.01), because the temperature changes significantly along the transverse axis especially for lower Rayleigh and Darcy numbers. Also, the effects of important nondimensional parameters such as Rayleigh and Darcy numbers, porosity, Nusselt, thermal conductivity, and aspect ratio on the temperature profile are investigated. The results demonstrate that the temperature distribution is strongly dependent on the Rayleigh and Darcy numbers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.