Abstract

Major problems can occur when liquid sloshes in a tank, such as in liquid storage tanks during an earthquake, and this is an important engineering problem to address. To analyze this phenomenon, the finite-element method is generally used but involves many degrees of freedom when the tank is large. In this paper, a nonlinear numerical model with relatively few degrees of freedom is established for vertical and horizontal two-dimensional nonlinear sloshing in a rectangular tank excited horizontally. In addition, a method is proposed for reducing the number of degrees of freedom in the two-dimensional model. The natural frequencies, modes, and frequency responses are then compared among the concentrated mass model, theoretical calculations, and experimental results. Good agreement was achieved among them, thus demonstrating the validity of the model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call