Abstract
An ac calorimetric method for measuring the thermal diffusivity of thin-film materials has been widely applied. In the application of this method, the systematic errors caused by the heat loss effect, the edge reflection effect, etc., have been analyzed and corresponding correction methods have been developed. But when measuring films with low thermal diffusivity or with thickness comparable to the thermal diffusion length, a two-dimensional effect which will also result in a systematic error of the measurement is present. In this paper, the mechanism of two-dimensional heat conduction within a thin sample which is supplied a periodic heat flux by a chopped light beam is analyzed. A numerical analysis method is developed to study the effect of the two-dimensional heat conduction on the measured thermal diffusivity values. The relations between the measured thermal diffusivity and independent parameters such as frequency, thickness of sample, width of light spot, etc., are demonstrated to indicate the two-dimensional effect. The experimental precondition for minimizing the systematic error caused by the two-dimensional effect is determined. In addition, the analysis method presented in this paper should be useful for more difficult problems such as error estimation of the thermal diffusivity measurement of coatings or composite films.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.